PREFACE

This *Metric International Version* differs from the regular version of *Calculus*, Sixth Edition, in several ways:

The units used in almost all of the examples and exercises have been changed from US Customary units to metric units. There are a small number of exceptions: In some engineering applications (principally in Section 9.3) it may be useful for some engineers to be familiar with US units. And I wanted to retain a few exercises (for example, those involving baseball) where it would be inappropriate to use metric units.

I've changed the examples and exercises involving real-world data to be more international in nature, so that the vast majority of them now come from countries other than the United States. For example, there are now exercises and examples concerning Hong Kong postal rates; Canadian public debt; unemployment rates in Australia; hours of daylight in Ankara, Turkey; isothermals in China; percentage of the population in rural Argentina; populations of Malaysia, Indonesia, Mexico, and India; and power consumption in Ontario, among many others.

In addition to changing exercises so that the units are metric and the data have a more international flavor, a number of other exercises have been changed as well, the result being that about 10% of the exercises are different from those in the regular version.

PHILOSOPHY OF THE BOOK

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to write a book that assists students in discovering calculus—both for its practical power and its surprising beauty. In this edition, as in the first five editions, I aim to convey to the student a sense of the utility of calculus and develop technical competence, but I also strive to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly experienced a sense of triumph when he made his great discoveries. I want students to

share some of that excitement. The emphasis is on understanding concepts. I think that nearly everybody agrees that this should be the primary goal of calculus instruction. In fact, the impetus for the current calculus reform movement came from the Tulane Conference in 1986, which formulated as their first recommendation:

Focus on conceptual understanding.

I have tried to implement this goal through the *Rule of Three*: "Topics should be presented geometrically, numerically, and algebraically." Visualization, numerical and graphical experimentation, and other approaches have changed how we teach conceptual reasoning in fundamental ways. More recently, the Rule of Three has been expanded to become the *Rule of Four* by emphasizing the verbal, or descriptive, point of view as well. In whiting the sixth edition my premise has been that it is possible to achieve londers tual understanding and still retain the best traditions of traditional calculus. The book con-

tual understanding and still retain the best traditions of traditional calculus. The book contains elements of reform, but within the context of a traditional curriculum.

TO THE STUDENT

Reading a calculus textbook is different from reading a newspaper or a novel, or even a physics book. Don't be discouraged if you have to read a passage more than once in order to understand it. You should have pencil and paper and calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and read the text only if they get stuck on an exercise. I suggest that a far better plan is to read and understand a section of the text before attempting the exercises. In particular, you should look at the definitions to see the exact meanings of the terms. And before you read each example, I suggest that you cover up the solution and try solving the problem yourself. You'll get a lot more from looking at the solution if you do so.

Part of the sin of this course to train you to think logically.

Learn to write the solutions of the exercises in a connected, step-by-step fashion with explanatory sentences—not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appendix I. Some exercises ask for a verbal explanation or interpretation or description. In such cases there is no single correct way of expressing the answer, so don't worry that you haven't found the definitive answer. In addition, there are often several different forms in which to express a numerical or algebraic answer, so if your answer differs from mine, don't immediately assume you're wrong. For example, if the answer given in the back of the book is $\sqrt{2} - 1$ and you obtain $1/(1 + \sqrt{2})$, then you're right and rationalizing the denominator will show that the answers are equivalent.

The icon \bigwedge indicates an exercise that definitely requires the use of either a graphing calculator or a computer with graphing software. (Section 1.4 discusses the use of these graphing devices and some of the pitfalls that you may encounter.) But that doesn't mean that graphing devices can't be used to check your work on the other exercises as well. The symbol (ΔS) is reserved for problems in which the full resources of a computer algebra system (like Derive, Maple, Mathematica, or the TI-89/92) are required.

You will also encounter the symbol \bigotimes , which warns you against committing an error. I have placed this symbol in the margin in situations where I have observed that a large proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this text, is referred to by means of the symbol **TEC** and can be accessed from www.stewartcalculus.com. It directs you to modules in which you can explore aspects of calculus for which the computer is particularly useful. TEC also provides *Homework Hints* for representative exercises that are indicated by printing the exercise number in red: **15**. These homework hints ask you questions that allow you to make progress toward a solution without actually giving you the answer. You need to pursue each hint in an active manner with pencil and paper to work out the details. If a particular hint doesn't enable you to solve the problem, you can click to reveal the next hint.

An optional CD-ROM that your instructor may have asked you to purchase is the *Interactive Video Skillbuilder*, which contains videos of instructors explaining two or three of the examples in every section of the text.

I recommend that you keep this book for reference purposes after you finish the course. Because you will likely forget some of the specific details of calculus, the book will serve as a useful reminder when you need to use calculus in subsequent courses. And, because this book contains more material than can be covered in any one course, it can also serve as a valuable resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one of the greatest achievements of the human intellect. I hope you will discover that it is not only useful but also intrinsically beautiful.

JAMES STEWART