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• Now is a good time to read (or reread)
A Preview of Calculus (see page 2). It discusses
the unifying ideas of calculus and helps put in
perspective where we have been and where we
are going.

FIGURE I
S = {(x,y) I a";; x";; b, 0,,;; y,,;; fIx)}

In this section we discover that in trying to find the area under a curve or the distance
traveled by a car, we end up with the same special type of limit.

We begin by attempting to solve the area problem: Find the area of the region S that lies
under the curve y = f(x) from a to b. This means that S, illustrated in Figure 1, is bounded
by the graph of a continuous function f [where f(x) ~ 0], the vertical lines x = a and
x = b, and the x-axis.

In trying to solve the area problem we have to ask ourselves: What is the meaning of
the word area? This question is easy to answer for regions with straight sides. For a rect-
angle, the area is defined as the product of the length and the width. The area of a triangle
is half the base times the height. The area of a polygon is found by dividing it into tri-
angles (as in Figure 2) and adding the areas of the triangles.

However, it isn't so easy to find the area of a region with curved sides. We all have an
intuitive idea of what the area of a region is. But part of the area problem is to make this
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by
slopes of secant lines and then we took the limit of these approximations. We pursue a sim-
ilar idea for areas. We first approximate the region S by rectangles and then we take the
limit of the areas of these rectangles as we increase the number of rectangles. The follow-
ing example illustrates the procedure.

i'!j EXAMPLE I Use rectangles to estimate the area under the parabola y = x2 from 0 to I
(the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1 because
S is contained in a square with side length 1, but we can certainly do better than that.
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IT&J 25. Find the exact area under the cosine curve y = cos x from
x = 0 to x = b, where 0 .; b .; 71/2. (Use a computer alge-
bra system both to evaluate the sum and compute the limit.)
In particular, what is the area if b = 7T/2?

26. (a) Let All be the area of a polygon with n equal sides
inscribed in a circle with radius r. By dividing the polygon

into n congruent triangles with central angle 27T/n, show
that

=================~ THE DEFINITE INTEGRAL

We saw in Section 5.1 that a limit of the form

II

OJ lim L f(xT) Lh = lim [J(xt) Llx + f(xi) Llx + ... + f(x,f) Llx]
n----"'OO ;= I n~OO

arises when we compute an area. We also saw that it arises when we try to find the dis-
tance traveled by an object. It turns out that this same type of limit occurs in a wide vari-
ety of situations even when f is not necessarily a positive function. In Chapters 6 and 9 we
will see that limits of the form (1) also arise in finding lengths of curves, volumes of solids,
centers of mass, force due to water pressure, and work, as well as other quantities. We
therefore give this type of limit a special name and notation.

[I] DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a ::;; x ::;; b,
we divide the interval [a, b] into n subintervals of equal width Llx = (b - a)/n.
We let Xo (= a), Xl, X2, •.. , Xn ( = b) be the endpoints of these subintervals and we
let x~, xi, ... , x,f be any sample points in these subintervals, so xI lies in the ith
subinterval [Xi-I, Xi]. Then the definite integral of f from a to b is

Cb II

Ja f(x) dx = ,~~i~ f(xt) Llx

Is: f(x) dx - it,f(xt) ~xl < e

ffiQ[JJ The symbol S was introduced by Leibniz and is called an integral sign. It is
an elongated S and was chosen because an integral is a limit of sums. In the notation
S:f(x) dx, f(x) is called the integrand and a and b are called the limits of integration;
a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning
by itself; S: f(x) dx is all one symbol. The dx simply indicates that the independent vari-
able is x. The procedure of calculating an integral is called integration.

user
矩形



(b) Use the result of Exercise 28 in Section 5.2 to find an expression for A(x).
(c) Find A'(x). What do you notice?
(d) If x ;;. -1 and h is a small positive number, then A(x + h) - A(x) represents the area

of a region. Describe and sketch the region.
(e) Draw a rectangle that approximates the region in part (d). By comparing the areas of

these two regions, show that

A(x + h) - A(x) "'" 1 + x2

h

(f) Use part (e) to give an intuitive explanation for the result of part (c).

ffi 3. (a) Draw the graph of the function f(x) = cos(x2) in the viewing rectangle [0, 2]
by [ - I .25, 1.25].

(b) If we define a new function 9 by

g(x) = f: cos(t2) dt

then g(x) is the area under the graph of f from 0 to x [until f(x) becomes negative, at
which point g(x) becomes a difference of areas]. Use part (a) to determine the value of
x at which g(x) starts to decrease. [Unlike the integral in Problem 2, it is impossible to
evaluate the integral defining 9 to obtain an explicit expression for g(x).]

(c) Use the integration command on your calculator or computer to estimate g(0.2), g(O.4),
g(0.6), ... , g(1.8), g(2). Then use these values to sketch a graph of g.

(d) Use your graph of 9 from part (c) to sketch the graph of g' using the interpretation of
g'(x) as the slope of a tangent line. How does the graph of g' compare with the graph
off?

4. Suppose f is a continuous function on the interval [a, b] and we define a new function 9
by the equation

g(x) = f: f(t) dt

The Fundamental Theorem of Calculus is appropriately named because it establishes a
connection between the two branches of calculus: differential calculus and integral calcu-
lus. Differential calculus arose from the tangent problem, whereas integral calculus arose
from a seemingly unrelated problem, the area problem. Newton's mentor at Cambridge,
Isaac Barrow (1630-1677), discovered that these two problems are actually closely
related. In fact, he realized that differentiation and integration are inverse processes. The
Fundamental Theorem of Calculus gives the precise inverse relationship between the
derivative and the integral. It was Newton and Leibniz who exploited this relationship and
used it to develop calculus into a systematic mathematical method. In particular, they saw
that the Fundamental Theorem enabled them to compute areas and integrals very easily
without having to compute them as limits of sums as we did in Sections 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equation
of the form

g(x) = fa" f(t) dt
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We saw in Section 5.3 that the second part of the Fundamental Theorem of Calculus pro-
vides a very powerful method for evaluating the definite integral of a function, assuming
that we can find an anti derivative of the function. In this section we introduce a notation
for antiderivatives, review the formulas for antiderivatives, and use them to evaluate defi-
nite integrals. We also reformulate FTC2 in a way that makes it easier to apply to science
and engineering problems.

Both parts of the Fundamental Theorem establish connections between antiderivatives and
definite integrals. Part I says that if f is continuous, then f:f(t) dt is an antiderivative of f.
Part 2 says that J:f(x) dx can be found by evaluating F(b) - F(a), where F is an antideriv-
ative of f.

We need a convenient notation for antiderivatives that makes them easy to work with.
Because of the relation given by the Fundamental Theorem between anti derivatives and
integrals, the notation f f(x) dx is traditionally used for an antiderivative of f and is called
an indefinite integral. Thus

f f(x) dx = F(x)

So we can regard an indefinite integral as representing an entire family of functions (one
antiderivative for each value of the constant C).

r!J You should distinguish carefully between definite and indefinite integrals. A definite
integral J:f(x) dx is a number, whereas an indefinite integral J f(x) dx is a function (or
family of functions). The connection between them is given by Part 2 of the Fundamental
Theorem. If f is continuous on [a, b], then

J: f(x) dx = f f(x) dX]~

The effectiveness of the Fundamental Theorem depends on having a supply of anti-
derivatives of functions. We therefore restate the Table of Antidifferentiation Formulas
from Section 4.9, together with a few others, in the notation of indefinite integrals. Any
formula can be verified by differentiating the function on the right side and obtaining the
integrand. For instance

f sec2xdx = tan x + C
d

- (tan x + C) = sec2x
dx
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=================~ THE SUBSTITUTION RULE

Because of the Fundamental Theorem, it's important to be able to find antiderivatives. But
our anti differentiation formulas don't tell us how to evaluate integrals such as

f2x~dx

• Differentials were defined in Section 3.9.
If u = j(x). then

du = f'(x) dx

To find this integral we use the problem-solving strategy of introducing something extra.
Here the "something extra" is a new variable; we change from the variable x to a new vari-
able u. Suppose that we let u be the quantity under the root sign in (1), u = 1 + x2• Then
the differential of u is du = 2x dx. Notice that if the dx in the notation for an integral were
to be interpreted as a differential, then the differential 2x dx would occur in (1) and so,
formally, without justifying our calculation, we could write

f2x~dx= f ~2xdx= f .r;du

But now we can check that we have the correct answer by using the Chain Rule to differ-
entiate the final function of Equation 2:

~ n(x2 + 1)3/2 + c] = ~•~(X2 + 1)1/2. 2x = 2x.JX2+1

In general, this method works whenever we have an integral that we can write in the
form f f(g(x)) g'(x) dx. Observe that if F' = f, then

f F'(g(x)) g'(x) dx = F(g(x)) + C
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