Conditional Expectation and Prediction
經常會產生一種情形, 即在觀測一隨機變數 X 之值後,
我們要根據此觀測值去預測另一隨機變數 Y 的值. 設 g(X) 表 預測量
(predictor), 也就是說, 當 X 的觀測值為 x 時, g(x) 為 Y 的預測值.
很明顯地, 我們希望選擇一函數g 使得 g(X) 和 Y 的值很接近. 而是否 "接近"
的一種可能的判定方式就是選取使得
E[(Y-g(X))2]為最小的函數 g.
下面我們將證明在此準則下, Y 的 最佳可能預測量 (best possible predictor)
為
g(X) = E[Y|X].
Proposition
Proof:
但,在給予 X 後,
E[Y|X] - g(X) 為 X 的函數, 可看作是一常數. 因此
因此, 由上面的式子得
兩邊取期望值, 即得所要證的結果.
- Example
- Suppose that the son of a man of height x (in inches) attains a height that is
normally distributed with mean x+1 and variance 4. What is the best prediction
of the height at full growth of the son of a man who is 6 feet tall?
- Solution:
- Formally, this model can be written as Y=X+1+e where e is a normal random
variable, independent of X, having mean 0 and variance 4. The X and Y, of
course, represent the heights of the man and his son, respectively. The best
prediction E[Y|X=72] is thus equal to