Conditional Expectation

XY 為聯合離散隨機變數, 那麼在已知 Y=y 的條件下, X 的條件機率 質量函數的定義為

$\displaystyle p_{X\vert Y} (x\vert y) = P\{X=x\ \vert Y=y \} = \frac{p(x,y)}{p_Y(y)} $
其中 pY (y) > 0. 因此我們很自然的作如下的定義: 對所有滿足 pY (y) > 0 的 y, 定義在 Y=y 的條件下, X條件期望值 (conditional expectation) 為
$\begin{array}{rcl}
E[X\vert Y=y]&=&\displaystyle\sum_x P\{ X=x\vert Y=y \}\\ \\
&=&\displaystyle\sum_x xp_{X\vert Y} (x\vert y)
\end{array}$
同樣, 設 XY 為聯合連續隨機變數, 其聯合機率密度函數為 f(x,y), 那麼對所有滿足 fY (y) > 0 的 y, 在已知 Y=y 的條件下, X 的條件機率密度函數的定義為
$ f_{X\vert Y} (x\vert y) = \displaystyle\frac{f(x,y)}{f_Y(y)} $
因此, 當 fY (y) > 0 時, 很自然地定義在 Y=y 的條件下, X 的條件期望值為
$ E[X\vert Y=y] = \displaystyle\int_{-\infty}^\infty xf_{X\vert Y} (x\vert y) dx $

Example
XY 的聯合密度函數為
$f(x,y)=\displaystyle\frac{e^{-x/y}e^{-y}}{y}\qquad 0<x<\infty,0 < y <\infty$
E[X|Y=y].
Solution:
我們先求條件密度函數
$ \begin{array}{rcl}
f_{X\vert Y} (x\vert y) & = & \displaystyle\frac {f(x,y)}{f...
...ty (1/y) e^{-x/y} dx } \\ \\
&=&\displaystyle\frac{1}{y} e^{-x/y}
\end{array}$
因此, 給予 Y=y, X 的條件分布恰為期望值是 y 的指數分布. 故得
$ E[X\vert Y=y] = \displaystyle\int_0^\infty \frac{x}{y} e^{-x/y} dx = y $

Remark
Just as conditional probabilities satisfy all of the properties of ordinary probabilities, so do conditional expectations satisfy the properties of ordinary expectations. For instance, such formulas as

$E[g(X)\vert Y=y]=\left\{
\begin{array}{ll}
\displaystyle\sum_x g(x)p_{X\vert Y}...
...x)f_{X\vert Y}(x\vert y)dx&\mbox{ in the continuous case }
\end{array}\right .$
and
$E\left [\displaystyle\sum_{i=1}^n X_i\vert Y=y\right ]=\displaystyle\sum_{i=1}^n E[X_i\vert Y=y]$
remain valid. As a matter of fact, conditional expectation given Y=y can be thought of as being an ordinary expectation on a reduced sample space consisting only of outcomes for which Y=y.