Problem III
When one is dealing with an infinite collection of random variables
,
each having a finite expectation, it is not necessarily true that
![$E\left [\displaystyle\sum_{i=1}^\infty X_i\right ] =
\sum_{i=1}^\infty E[X_i]\qquad (2.3)$](img2.gif)
and thus
![$\begin{array}{rcl}
E\left [\displaystyle\sum{i=1}^\infty X_i\right ]&=&
E\left ...
...}\sum_{i=1}^nE[X_i] \\ \\
&=&\displaystyle\sum_{i=1}^\infty E[X_i]
\end{array}$](img4.gif)
Hence Equation (2.3) is valid whenever we are justified in interchanging the expectation and limit operations in Equation (2.4). Although, in general, this interchange is not justified, it can be shown to be valid in two important special cases:
![$\displaystyle\sum_{i=1}^\infty E[\vert X_i\vert]<\infty$](img6.gif)


![$\begin{array}{rcl}
E[X]&=&\displaystyle\sum_{i=1}^\infty E(X_i) \\ \\
&=&\displaystyle\sum_{i=1}^\infty P\{X\geq i\}
\end{array}$](img11.gif)
If X is a nonnegative continuous random variable and
.
Then
.