Expectation of Sums of Random Variables

That is, Xi represents the number of additional trials required, after the
(i-1)st success, until a total of i successes are amassed. A little thought
reveals that each of the random variables Xi is a geometric random variable
with parameter p. Hence,
;
and thus
![$E[X]=E[X_1]+\cdots+E[X_r]=\displaystyle\frac{r}{p}\qquad\rule[0.02em]{1.0mm}{1.5mm}$](img7.gif)

![$\begin{array}{rcl}
E[X_i]&=&P\{X_i=1\} \\ \\
&=&P\{i\mbox{th white ball is sel...
...n-1}}{\displaystyle{N\choose n}} \\ \\
&=&\displaystyle\frac{n}{N}
\end{array}$](img10.gif)
.
We could also have obtained the above result by using the alternative
representation
where

so
![$E[X]=E[Y_1]+\cdots+E[Y_n]=\displaystyle\frac{nm}{N}\qquad\rule[0.02em]{1.0mm}{1.5mm}$](img15.gif)