Example
- Example (The Sample Mean)
- Let
be independent and identically distributed random variables
having distribution function F and expected value
.
Such a sequence of
random variables is said to constitute a sample from the distribution F. The
quantity
,
defined by
is called the sample mean. Compute
.
- Solution:
-
That is, the expected value of the sample mean is
,
the mean of the
distribution. When the distribution mean
is unknown, the sample mean is
often used in statistics to estimate it.
- Example (Boole's Inequality)
- 令
為 n 個事件且定義指標變數
如下:
令
.
故 X 表示事件 Ai 發生的個數. 最後, 令
也就是說, 當至少有一事件 Ai 發生時, Y 等於 1, 否則 Y 為 0.
因
故
但是因為
且
所以我們得到 Boole 不等式, 即
![$P \left ( \displaystyle\bigcup_{i=1}^n A_i\right ) \leq\sum_{i=1}^n P(A_i)\qquad\rule[0.02em]{1.0mm}{1.5mm}$](img17.gif)