Example

Example
The joint density function of X and Y is given by
$f(x,y)=\left\{
\begin{array}{ll}
2e^{-x}e^{-2y}&0<x<\infty,0<y<\infty \\ \\
0&\mbox{ otherwise }
\end{array}\right .$
Compute (a) $P\{X>1,Y<1\}$,(b) $P\{X<Y\}$, and (c) P{X<a}.
Solutions:
(a)
$\begin{array}{rcl}
P\{X>1,Y<1\}&=&\displaystyle\int_0^1\int_1^\infty 2e^{-x}e^{...
...=&e^{-1}\displaystyle\int_0^1 2e^{-2y}dy \\ \\
&=&e^{-1}(1-e^{-2})
\end{array}$

(b)

$\begin{array}{rcl}
P\{X<Y\}&=&\displaystyle\int\int\limits_{\hspace{-0.5cm}(x,y...
...\
&=&1-\displaystyle\frac{2}{3} \\ \\
&=&\displaystyle\frac{1}{3}
\end{array}$

(c)

$\begin{array}{rcl}
P\{X<a\}&=&\displaystyle\int_0^a\int_0^\infty 2e^{-2y}e^{-x}...
...t_0^a e^{-x}dx \\ \\
&=&1-e^{-a} \qquad\rule[0.02em]{1.0mm}{1.5mm}
\end{array}$

Example
The joint density of X and Y is given by
$f(x,y)=\left\{
\begin{array}{ll}
e^{-(x+y)}&0<x<\infty, 0<y<\infty \\ \\
0&\mbox{ otherwise }
\end{array}\right .$
Find the density function of the random variable X/Y.
Solutions:
We start by computing the distribution function of X/Y. For a>0,
$\begin{array}{rcl}
F_{X/Y}(a)&=&P\left\{\displaystyle\frac{X}{Y}\leq a\right\} ...
...\right ]\Big \vert _0^\infty \\ \\
&=&1-\displaystyle\frac{1}{a+1}
\end{array}$