
To calculate
,
we convert to the standardized
variable

The z-values corresponding to 80.8 and 83.2 are
and

Consequently,
![$\begin{array}{rcl}
P[80.8<\overline{X}<83.2]&=&P[-.8<Z<.8] \\
&=& .7881-.2119 \mbox{ (using the normal table) } \\
&=&.5762 \\
\end{array}$](img10.gif)

Therefore,
![$\begin{array}{rcl}
P[80.8<\overline{X}<83.2]&=&\displaystyle P[\frac{80.8-82}{1...
...-82}{1.2}] \\
&=&P[-1.0<Z<1.0] \\
&=&.8413-.1587 \\
&=&.6826 \\
\end{array}$](img13.gif)
Note that the interval
(80.8, 83.2) is centered at
.
The probability
that
will lie in this interval is larger for n=100 than for
n=64.