next up previous
Next: About this document ...

Chapter 4.6 The QR Algorithm

Schur's Thm

$\exists Q$ unitary $\rightarrow Q^* A Q = T = D + N$

If A is given , and u0 is any unitary matrix

A1 = u0* A0 u0

$\left \{
\matrix{ A_1 = Q_2 R_2 \cr
set ~~R_2 Q_2 = A_2 \cr}
\right $ $\left
\matrix{
{\left \{
\matrix{ A_0 = Q_1 R_1 \cr
R_1 Q_1 = A_1 \cr
}
...
... \{
\matrix{ A_1 = Q_2 R_2 \cr
R_2 Q_2 = A_2 \cr
}
\right } \cr
}
\right$ general form $ \left \{
\matrix{ A_{m-1} = Q_m R_m \cr
R_m Q_m = A_m \cr
}
\right $

[Thm] $\{ A_m \} \overrightarrow { m \rightarrow \infty } T = D + N$ Note : $A_m = {Q_m}^* A_{m-1} Q_m \Rightarrow A_m = ( {Q_m}^* {Q_{m-a}}^* \cdots {Q_1}^* ) A_0 ( Q_1 \cdots Q_m )$

$\Vert ~~~~~~~~~\Vert
\par R_m \cdot Q_m ~~~~~{Q_m}^* (Q_m \cdot R_m ) Q_m$

$A = \left [
\matrix{ 8 & 2 \cr
2 & 5 \cr
}
\right ]
\par A = A_0 = Q_1 R_1$

Let $A_1 = R_1 Q_1 = \left [
\matrix{ 8.7648 & 1.0588 \cr
1.0588 & 4.2352 \cr
}
\right ]$

Upper Hessenberg

$\left [
\matrix{ * & * & * & \cdots & \cdots & * \cr
* & * & * &&& \vdots \cr...
... && \vdots \cr
&&& \ddots & \ddots & \vdots \cr
0 &&&& * & * \cr
}
\right ]$



 


1998-08-15