[Def] Q is orthogonal matrix if QQT = I ( QT = Q-1)
Note : If Q orthogonal
< gi , gj > =
are row ( column ) vectors of Q .
is a inner product if
1.
< x , y > = < y , x >
2. <
x +
y , z > =
< x , z > +
< y , z >
3.
=
< x . y > +
< x , z >
4. < x , x >
0 (
< x , x > = 0
< x = 0 >
Example : < x , y > = xT y = yT x
= < x , x > = xT x ( because If x = < x1 , x2 , ... , xn >
= x21 + x22 + ... , x2n )
Cauchy Schwartz Inequality :
(
)
The angle of two vector x,y satisfy =
i.e. =
Least-Square Problems :
Example :
over-determinate
Least Square Problem :
Find the best answer xT , satisfy b - A xT minimal .
Note : use A=QR can solve Least Square Solution xT of Ax=b .
[Thm] A=QR
where Q : Orthogonal R : upper triangular
Use A = QR to solve the system of AX = b :
STEP 1. QRx = b
STEP 2. Rx = QTb
STEP 3.
Let QT b = d
STEP 4. Solve Rx = d by the backward subsitution.
In MATLAB , A = QR
>> [ Q , R ] = qr(A)
: Rotator is an orthogonal matrix
Q orthogonal =
[Lemma]
< Qx , Qy > = < x , y >
< Qx , Qy > = (Qy)T (Qx) = yT ( QT Q ) x = yT x = < x , y >
when x=y < Qx , Qy > = < x , x >
Qx 22
Least-Square Problem :
= = ( If A=QR )
A is nonsingular
column vectors are l.I. .
row vectors are l.I. .
Rotator :
Q =
(Q-1 = ) = QT = =
then , cos = ? , sin = ?
x1 sin = x2 cos
cos = , sin =
( because must be satisfy + = 1 ) Given matrix :
=
i th j th column C = S =
Reflectors : (Picture:)
Reflectors : Q
If P = u uT = 1 P2 = P ( projection )
1. Pu = -u
because
Pu = u uT u = u
2. Pv = v
Pv = u ( ut v ) = 0
Let Q = I - 2P Q2 = I ( idempotent )
then , Qu = I(u) - 2P(u) = u - 2u = -u and QV = I(v) - 2P(v) = v - 0 = v
so satisfy Reflector i.e. Q = I - 2 u uT ( Householder transformation )
Note : u uT is the rank 1 matrix .
Q = I - r u uT , u has no limitation = 1 r =
[Thm] = , ! Q orthogonal s.t. Qx = y .
Example : A =
= QR
We hope to find
QT , x , QT . A = R (
A=QR )
Q
=
P147 Figure 3.4
1. x =
+
[ Note :
]
2.
Q = I - r u uT , r =
u1 = ( x - y )
[ In the analysis of QR . x : the column vector of the origin A . y :
the column vector of the origin R ]
reduction u =
Q = I - 2 u uT
x - y =
so u = , =
Q = -
Example :
A =
= QR
Q = I - 2
=
-
=
=
QT . A =
=
u = x - y =
-
=
=
A = QR
1. Use Rotator ( Jacobi matrix )
Q =
2. Reflector :
Q = I - 2 u uT ( Orthogonal projector )
3. Gram-Schmidt Orthonomalization