 
 
 
 
 
   
[Def] Q is orthogonal matrix if QQT = I 
( 
 QT = Q-1)
QT = Q-1)
Note : If Q orthogonal
 < gi , gj > =
< gi , gj > = 
 are row ( column ) vectors of Q .
are row ( column ) vectors of Q .
 is a inner product if
is a inner product if 
1. 
< x , y > = < y , x > 
2. <  x +
x +  y , z > =
y , z > = 
 < x , z > +
< x , z > +  < y , z >
< y , z > 
3. 
 =
= 
 < x . y > +
< x . y > +  < x , z >
< x , z > 
4. < x , x >  0 ( 
< x , x > = 0
0 ( 
< x , x > = 0 
 < x = 0 >
< x = 0 >
Example : < x , y > = xT y = yT x
 = < x , x > = xT x 
( because If  
x = < x1 , x2 , ... , xn >
= < x , x > = xT x 
( because If  
x = < x1 , x2 , ... , xn >
 
 = x21 + x22 + ... , x2n )
= x21 + x22 + ... , x2n )
Cauchy Schwartz Inequality :
 
 
 
( 
 
 
 
 )
)
The angle of two vector x,y satisfy 
 =
= 
 
i.e.  =
= 
 
Least-Square Problems :
Example :  
 
over-determinate 
Least Square Problem :
Find the best answer xT , satisfy  b - A xT
b - A xT  minimal .
minimal .  
Note : use A=QR can solve Least Square Solution xT of Ax=b .
[Thm] 
 
 A=QR
A=QR     
 
    
 
where Q : Orthogonal R : upper triangular
Use A = QR to solve the system of AX = b :
STEP 1. QRx = b 
STEP 2. Rx = QTb 
STEP 3. 
Let   QT b = d 
STEP 4. Solve  Rx = d   by  the backward subsitution.
In MATLAB , A = QR
>> [ Q , R ] = qr(A)
![$\left \{
\matrix{ Rotator \cr Reflector \cr } \right ~~~~~
\left [ \matrix{ \cos \theta & -\sin \theta \cr
\sin \theta & \cos \theta \cr } \right ]$](img26.gif) :
Rotator is an orthogonal matrix
:
Rotator is an orthogonal matrix
Q orthogonal 
 
 =
= 
 
[Lemma]
< Qx , Qy > = < x , y >
< Qx , Qy > = (Qy)T (Qx) = yT ( QT Q ) x = yT x = < x , y >
when   x=y 
 < Qx , Qy > = < x , x >
< Qx , Qy > = < x , x >
 
 Qx
Qx  22
22       
 
Least-Square Problem :
 
 
 
 =
= 
 
 
 
 =
= 
 
 
 
 ( If A=QR )
( If A=QR )
A is nonsingular
 column vectors are l.I. .
column vectors are l.I. .
 row vectors are l.I. .
row vectors are l.I. .
Rotator :
Q = 
![$\left [ \matrix{ \cos \theta & -\sin \theta \cr
\sin \theta & \cos \theta \cr } \right ]$](img34.gif) 
(Q-1 = ) = QT = 
![$\left [ \matrix{ \cos \theta & \sin \theta \cr
-\sin \theta & \cos \theta \cr } \right ] $](img35.gif) 
![$\left [ \matrix{ x_1 \cr x_2 \cr } \right ]$](img36.gif) =
=  
![$\left [ \matrix{ y \cr 0 \cr} \right ] $](img37.gif) 
then , cos  = ? , sin
= ? , sin  = ?
= ?
 
 x1 sin
x1 sin  = x2 cos
= x2 cos  
cos  =
= 
 , 
sin
, 
sin  =
= 
 
( because must be satisfy  
 +
+  
 = 1 )
Given matrix :
= 1 )
Given matrix :
 
![$ \left [
\matrix{ 1 &&&&&& \cr
& \ddots &&&&& \cr
&& C && -S && \cr
&&& \ddots &&& \cr
&& S && C && \cr
&&&&& \ddots & \cr
&&&&&& 1 \cr
}
\right ]$](img44.gif) 
![$ \left [
\matrix{ x_1 \cr \vdots \cr x_i \cr \vdots \cr x_j \cr \vdots \cr x_n \cr }
\right ]$](img45.gif) =
= 
![$\left [
\matrix{ x_1 \cr \vdots \cr \sqrt 5 \cr \vdots \cr 0 \cr \vdots \cr x_n \cr}
\right ]$](img46.gif) 
 
  i th   j th    column 
 C = 
 S =
S = 
 
Reflectors : (Picture:)
Reflectors : Q
 
If P = u uT   
 = 1    P2 = P ( projection )
= 1    P2 = P ( projection )
1. Pu = -u       
because 
  Pu = u uT u = u 
2. Pv = v       
Pv = u ( ut v ) = 0
Let Q = I - 2P Q2 = I ( idempotent )
then , Qu = I(u) - 2P(u) = u - 2u = -u and QV = I(v) - 2P(v) = v - 0 = v
so satisfy Reflector i.e. Q = I - 2 u uT ( Householder transformation )
Note : u uT is the rank 1 matrix .
Q = I - r u uT , u has no limitation 
 = 1   r =
= 1   r = 
 
[Thm] 
 =
= 
 ,
,  ! Q orthogonal s.t. Qx = y .
! Q orthogonal s.t. Qx = y .
Example :  A = 
![$\left [ \matrix{ 1 & 2 \cr 2 & 3 } \right ]$](img56.gif) = QR
= QR
We hope to find 
QT , x , QT . A = R   (
 A=QR )
A=QR )
Q 
![$\left [ \matrix{ 1 \cr 1 \cr } \right ]$](img57.gif) =
= 
![$\left [ \matrix{ \sqrt 2 \cr 0 \cr } \right ]$](img58.gif) 
P147 Figure 3.4
1. x = 
 +
+ 
 
[ Note : 
 ]
] 
2. 
Q = I - r u uT  ,  r = 
 
u1 = ( x - y ) 
[ In the analysis of QR . x : the column vector of the origin A . y : 
the column vector of the origin R ]
reduction u = 
 
Q = I - 2 u uT
x - y = 
![$\left [ \matrix{ 1 \cr 1 \cr } \right ] -
\left [
\matrix{ \sqrt 2 \cr 0 \cr }
\right ] =
\left [
\matrix{ 1 - \sqrt 2 \cr 1 \cr }
\right ] $](img63.gif) 
so   u = 
 
![$\left [ \matrix{ 1 - \sqrt 2 \cr 1 \cr } \right ]$](img65.gif) ,
,
![$\left [ \matrix{ 1 - \sqrt 2 \cr 1 \cr } \right ]$](img65.gif) 
![$\left [ \matrix{ 1 - \sqrt 2 & 1 \cr } \right ]$](img66.gif) =
= 
![$\left [ \matrix{ 3 - 2 \sqrt 2 & 1 - \sqrt 2 \cr
1 - \sqrt 2 & 1 \cr } \right ]$](img67.gif) 
Q =
![$\left [ \matrix{ 1 & 0 \cr 0 & 1 \cr } \right ]$](img68.gif) -
- 
 
![$\left [ \matrix{ 3 - 2 \sqrt 2 & 1 - \sqrt 2 \cr
1 - \sqrt 2 & 1 \cr } \right ]$](img67.gif) 
Example :
A = 
![$\left [ \matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 2 & 1 & 3 \cr } \right ]$](img70.gif) = QR
= QR 
Q = I - 2
 =
= 
![$\left [ \matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } \right ]$](img72.gif) -
- 
 
![$\left [ \matrix{ 4 & -4 & -4 \cr -4 & 4 & 4 \cr -4 & 4 & 4 \cr } \right ]$](img74.gif) 
= 
![$\left [ \matrix{ 1 \over 3 & 2 \over 3 & 2 \over 3 \cr 2 \over 3 &
1 \over 3 & -3 \over 3 \cr 2 \over 3 & -2 \over 3 & 1 \over 3 \cr }
\right ]$](img75.gif) =
=
![${1 \over 3} \left [ \matrix{ 1 & 2 & 2 \cr 2 & 1 & -2 \cr
2 & -2 & 1 \cr } \right ]$](img76.gif) 
QT . A = 
![$\left [ \matrix{ 3 & {10} \over 3 & {17} \over 3 \cr
0 & 5 \over 3 & 4 \over 3 \cr 0 & - 1 \over 3 & 1 \over 3 \cr } \right ]$](img77.gif) =
= 
 
![$\underbrace {
\left [ \matrix{ 1 & 2 & 2 \cr 2 & 1 & -2 \cr 2 & -2 & 1 \cr } \right ] }_{Q^T}$](img79.gif) 
![$\left [ \matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 2 & 1 & 3 \cr } \right ]$](img70.gif) 
u = x - y =
![$\left [ \matrix{ 1 \cr 2 \cr 3 \cr} \right ]$](img80.gif) -
- 
![$\left [ \matrix{ 3 \cr 0 \cr 0 \cr} \right ]$](img81.gif) =
=
![$\left [ \matrix{ -2 \cr 2 \cr 2 \cr} \right ]$](img82.gif) 
![$\left [ \matrix{ -2 \cr 2 \cr 2 \cr} \right ]$](img82.gif) 
![$\left [ \matrix{ -2 & 2 & 2 \cr} \right ]$](img83.gif) =
= 
![$\left [ \matrix{ 4 & -4 & -4 \cr -4 & 4 & 4 \cr -4 & 4 & 4 \cr } \right ]$](img74.gif) 
A = QR
1. Use Rotator ( Jacobi matrix )
Q = 
![$\left [ \matrix{ \cos \theta & -\sin \theta \cr
\sin \theta & \cos \theta \cr } \right ]$](img34.gif) 
2. Reflector : 
Q = I - 2 u uT ( Orthogonal projector )
3. Gram-Schmidt Orthonomalization                    
 
 
 
 
