next up previous
Next: About this document ...

Chapter 1.5 Positive Definite System Chelosky Decomposition

[Def] If A is square symmetry , real and satisfy xTAx>0 for all x , then A is called positive definite matrix.

[Thm] If A is positive definite then A is nonsingular.

[Cor] A is positive definite then the system Ax=b has a unique solution.
<Proof of Thm>

If A is singular then $\exists$ x $\ne$ 0 $\rightarrow$ Ax=0 $\Rightarrow$ xT(Ax)=xT 0 = 0 $\to \gets$

$\Rightarrow$ A is not position definite.

[Thm] If M is real and nonsingular , then A=MMT is position definite.

<Proof>

1.
real $\rightarrow$ OK !
2.
symmetric (AT=A) because AT=(MMT)T=(MT)TMT=MMT=A
3.
for all x $\ne$ 0 (xTAx > 0) because xTAx=xT(MMT)x=yTy ( Let y=MTx ) > 0
If y= (y1, ... ,yn)T

yTy=y21+y22+ ... +y2n $=\sum_{i=1}^n y^2_i > 0$

<PS>
1.
If A is positive definite then all its eigenvalues are positive and real.
2.
Positive definite matrix , not all entries are positive.


[Thm] Cholesky Decomposition If A is positive definite , then A can be factored into A=GGT where G is a lower triangular matrix and has positive entries on its main diagonal element .

Example :

(1) M= $\left [
\matrix{ 1 & 0 & 0 \cr
1 & 1 & 0 \cr
1 & 1 & 1 \cr
}
\right ] $ MT= $\left [
\matrix{ 1 & 1 & 1 \cr
0 & 1 & 1 \cr
0 & 0 & 1 \cr
}
\right ] $

then A=MMT= $ \left [
\matrix{ 1 & 1 & 1 \cr
1 & 2 & 2 \cr
1 & 2 & 3 \cr
}
\right ] $  is  a  positive  definite.

If A= $ \left [
\matrix{ 1 & 1 & 1 \cr
1 & 2 & 2 \cr
1 & 2 & 3 \cr
}
\right ] $  is  a  positive  definite , then  if  A=GGT G=M

A=LU= $\left [
\matrix{ 1 & 0 & 0 \cr
l_{21} & 1 & 0 \cr
l_{31} & l_{32} & 1 \cr
}...
... u_{12} & u_{13} \cr
0 & u_{22} & u_{23} \cr
0 & 0 & u_{33} \cr
}
\right ] $

= $\left [
\matrix{ 1 & 0 & 0 \cr
l_{21} & 1 & 0 \cr
l_{31} & l_{32} & 1 \cr
}...
...\over u_{11} \cr
0 & 1 & u_{23} \over u_{22} \cr
0 & 0 & 1 \cr
}
\right ] $

= $\left [
\matrix{ 1 & 0 & 0 \cr
l_{21} & 1 & 0 \cr
l_{31} & l_{32} & 1 \cr
}...
... \over u_{11} \cr
0 & 1 & u_{23} \over u_{22} \cr
0 & 0 & 1 \cr
}
\right ] $

Example :

M= $ \left [
\matrix{ 1 & 2 \cr
2 & 4 \cr
}
\right ] $ and A=MMT= $\left [
\matrix{ 5 & 11 \cr
11 & 25 \cr
}
\right ] $

The LU Decomposition of

A= $ \left [
\matrix{ 1 & 0 \cr
11 \over 5 & 1 \cr
}
\right ]
\left [
\matrix{ 5 & 11 \cr
0 & 4 \over 5 \cr
}
\right ] $ = $\left [
\matrix{ 1 & 0 \cr
11 \over 5 & 1 \cr
}
\right ]
\left [
\matrix...
...cr
}
\right ]
\left [
\matrix{ 1 & 11 \over 5 \cr
0 & 1 \cr
}
\right ] $

= $\left [
\matrix{ 1 & 0 \cr
11 \over 5 & 1 \cr
}
\right ]
\left [
\matrix...
...\cr
}
\right ]
\left [
\matrix{ 1 & 11 \over 5 \cr
0 & 1 \cr
}
\right ]$

= $\left [
\matrix{ \sqrt 5 & 0 \cr
{11 \sqrt 5} \over 5 & {2 \sqrt 5} \over 5 ...
...x{ \sqrt 5 & {11 \sqrt 5} \over 5 \cr
0 & {2 \sqrt 5} \over 5 \cr
}
\right ]$ = GGT
Cholesky Decomposition

A is position Definite

$\Leftrightarrow$ A can be decomposed in exact one way A=GGTwhere G is lower triangular with positive diagonal.

[ $\Leftarrow$ MMT=A Then A is positive Definite

In particular M=G. ]

A=GGT

A=(aij)= $ \left [
\matrix{ a_{11} & a_{12} & \cdots & a_{1n} \cr
a_{21} & a_{22} & \cd...
...dots & \cdots & \vdots \cr
a_{n1} & a_{n2} & \cdots & a_{nn} \cr
}
\right ]$ = $\left [
\matrix{ g_{11} & 0 & 0 & 0 \cr
g_{21} & g_{22} & 0 & 0 \cr
\vdots &...
...& g_{2n} \cr
0 & 0 & \ddots & \vdots \cr
0 & 0 & 0 & g_{nn} \cr
}
\right ] $

First , find the first colume of G .

STEP 1.
a11=g11 g11 $\Rightarrow$ g11= $+ \sqrt a_{11}$ (ai1=gi1 g11)
STEP 2.
$\left \{\matrix{
a_{21}=g_{21} g_{11} \Rightarrow
g_{21}={a_{21} \over g_{1...
...
a_{n1}=g_{n1} g_{11} \Rightarrow
g_{n1}={a_{n1} \over g_{11}} \cr
}\right $
Second , slove the second colume .

a22=g21 g21 + g22 g22 $\rightarrow$ g22= $+\sqrt {a_{22}-g^2_{21}} $

In general , For j=1 ...n ,

gii= $+ \sqrt {a_ja_j- \sum_{k=1}^{j-1} g^2_{jk}}$

gij= ${(a_{ij}- \sum_{k=1}^{j-1} g_{ik}g_{jk}) \over g_{jj}}$ , $i=j+1 \dots n$

(  Find  gii  ,  then  find  gij )

Example : A= $\left [
\matrix{ 4 & -2 & 4 & 2 \cr
-2 & 10 & -2 & -7 \cr
4 & -2 & 8 & 4 \cr
2 & -7 & 4 & 7 \cr
}
\right ]$ = $\left [
\matrix{ g_{11} & 0 & 0 & 0 \cr
g_{21} & g_{22} & 0 & 0 \cr
g_{31} &...
...& g_{24} \cr
0 & 0 & g_{33} & g_{34} \cr
0 & 0 & 0 & g_{44} \cr
}
\right ]$

Phase 1. first colume

4=g211 $\rightarrow$ g11= $+ \sqrt 4$ = 2

g21= ${-2 \over 2}$ = -1 g31= ${4 \over 2}$ =2

g41= ${2 \over 2}$ =1

Phase 2. second colume

g22= $ \sqrt {a_{22}-g^2_{21}}$ = 3

g32= ${(a_{32}-g_{31}g_{21}) \over g_{22}}$ = 0

g42= -2

Note : 1. A positive definite $\Rightarrow$ aii > 0 for all i
2. aij not necessary $\geq$ 0

Algorithm ( Cholesky Decomposition )

for j=1 ...n

for n=1 ...j-1

ajj $\leftarrow$ ajj-a2jk

ajj $\leftarrow \sqrt(a_{jj})$

for i=j+1 ...n

for k=1 ...j-1

aij $\leftarrow$ aij-aik ajk

aij $\leftarrow$ ${a_{ij} \over a_{jj}} $


 
next up previous
Next: About this document ...

1998-08-12