Chapter 1 高斯消去法(Haussiam Elimination)
Matrix mode : Ax=b
If A-1 exist,then answer is
x=A-1b .
下列條件互為等價:
- A-1 exists
- det(A)
0
- The row vector of A are l.I ( Linear Indep. )
- The column vector of A are l.I
- The RREF of A is the Identity matrix
- A is full rank
- Ax=0
x=0 ( There is no nozero x such that Ax=0 )
<PS>
- The "pivots" are the first nonzero entries in these rows.
- The number of pivots is the "rank".
三角矩陣
- 下三角矩陣:
Def : lij=0
whenever i < j
- 上三角矩陣
Def : uij=0
whenever i > j
[Thm] 如果 G=(gij) 為三角矩陣,
則 det(G) = g11
. g22
... gnn .
[Cor] 設 G 為三角矩陣,若 G 為 nonsingular
gii
0 for all i=1 ...n.
[Cor] G 若為三角矩陣,Gx=b 有唯一解
G 的主對角線皆不為 0
A=LU L:lower
U:upper
slove Ax=b is the same to LUx=b
- Ux=y , LUx=b
Ly=b
- 先解 y
- 再解 Ux = y 的 x
Forward Substitution
aij , bi
are given.
演算法:
For i=1 : n
if lii=0 exit
for j=1 ...i-1
end
<PS>
上三角系統 Ux=y 解法也類似 Forward Substitution,
先解yn , 再解 yn-1 ...
此法稱為 "Backward Subsitution"。
Example :
Exercise : Prove det(A)=g11 g22