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Abstract

We propose a method for spike classification
based on the hypothesis that the mean and
variance of a normally distributed noise is
known. The proposed classification method is
based on a fundamental method that classifies
a set of randomly perturbed points. With some
practically computable parameters, the later
estimates its confidence of performance by giv-
ing an upper bound of error rates. We derive
this fundamental method mathematically, ap-
ply it to the task of spike classification, and
show how it works by a numerical experiment
which compares with a PCA scattering plot.
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Introduction

While many powerful imaging techniques
have been used in neuroscience, extracellular
recording remains the only choice that pro-
vides resolution at single neuron activity in the
brain. However, multiple single-unit extracel-
lular recordings are useful only if the spikes
generates by different neurons can be sorted
correctly. The usual assumption for spikes
sorting is that all spikes generated by a specific
neuron are characterized by a similar waveform
and the waveform is unique and conserved
for each neuron during a stationary record-
ing. Among different methods used for spike-
sorting, template matching is one of the most
popular procedures. The usual practice to pro-
duce templates is to use a “supervisor,” that
is, an experienced and knowledgeable operator,

to give a preliminary classification of the wave-
forms following a selection of templates cor-
responding to distinct neurons. A few meth-
ods have dealt with unsupervised templates
creation, complicated statistical methods were
largely introduced in these methods.

In this short report we propose a classifi-
cation method based on mathematical proper-
ties of the statistical model for the spikes and
noise. We assume that the neural action poten-
tials are recorded properly with a digital filter
at a fixed sampling rate. The recorded digital
data is then processed by certain spike detec-
tion and alignment programs [1], the result is
a set of short signals with same length. It is
commonly assumed that these signals are neu-
ral action potentials contaminated by a nor-
mally distributed noise [2]. The task here is to
classify these signals into different wave forms.

In the following, we first derive mathe-
matically a fundamental method that classi-
fies a set of randomly perturbed points into
two groups. This method will estimate its
confidence of performance by giving practi-
cally computable upper bounds of error rates.
Then we apply this method to classify noisy
action potential signals with confidence on er-
ror rates. One set of experiments is included to
demonstrate how this method works and how
does it compare to the scattering plot of first
two principal components. We refer the read-
ers to [3] for more mathematical details and
experimental results.

Classifying two groups of points

Let a and b be two distinct real numbers, N,
and N be two sets of numbers sampled from a
normal distribution with mean 0 and standard
deviation o. Then A = a+ N, and B = b+ N
are sets of perturbed points around a and b.
Consequently A and B are also normally dis-
tributed with means a and b, respectively, and
with standard deviation ¢. We mix the points
of A and B into C. The task here is to classify
all points of C into either A or B.
Theoretically, we can’t classify C per-
fectly because the noise is not known before-



hand and hence is not removable. So prac-
tically we should evaluate “how correct” the
classification is. We will present a method
for classification together with an estimation
of the percentage of correctness.

Let a = #A/#C where #A is the num-
ber of elements in A, and so on. Then
1—a = #B/#C. Let i and & be the mean
and standard deviation of points in C, respec-
tively. Without loss of generality, we assume
a > b. Let K be a positive number such that
C C [p— K7,u+ Kao]. Let L be another pos-
itive number such that A C [a — Lo,a + Lo]
and B C [b— Lo,b+ Lo]. Since C is a fi-
nite set, such numbers K and L must exist.
Furthermore, since the noise is assumed to be
normally distributed, K and L can actually be
chosen between 1 and 3 in practice. In this
model, a, b and « are unknown, we are given
the set C and the standard deviation o; note
that & and ¢ are computable from C.

Here is the method of classification.
Choose two numbers s; and ss—we will give
guidelines for the choice later. We classify C
into two groups by the following criteria. Take
apoint p € C,if p >pu— Ko+ s3 then we
assign p € A. If p < 1+ K& — s; then we
assign p € B. Otherwise p is not classified.

The choice of s; and s has to avoid the er-
ror of overlapped classification; that is, a point
is assigned to both A and B. It suffices to
require s; + so > 2Ko; if we want a total clas-
sification (every point is classified), replace >
by =. When s; and sy are larger, the rate of
correct classification is higher. Unfortunately,
the number of unclassified points is also higher.
When s; and sz are too large, we might not
get any point classified. So there should be an
upper bound for the choice of s; and s3. We
suggest

{31 <Kt+Lo—(1—-a)(a—Db) O

s < Ko+ Lo — afa —b)

This suggestion is justified by (2) below, and
we shall estimate o and a — b later.

The percentage of correct classification
is 1 — (percentage of not classified) — (per-
centage of incorrect classification). Let N, (z)
be the probability density function of nor-
mal distribution with mean p and standard
deviation o. By the parameters defined
above, the percentage of incorrect classification

is by definition affjgf_sl Ny(z)dzr + (1 —

) ﬁbff{%m Ny(z) dz. Tt can be simplified to

Ko—(1—a)(a—b)—s1
a/ Ny(z) dzx

—Lo

Lo
+(1 — a)/ Ny(z) dx
—Ko+a(a—b)+s2

which is computable once « and a — b are es-
timated.

Let r = (3(z — @)3) /#C where the sum-
mation takes over all z € C. Then

r= [ (@Nale) + (1~ N(@) (@~ ) do

—oC

After a lengthy calculation we get

1 T
= 5(1 * \/4(52 —02)3 + 7"2) (3)
and -
. b \/4(0_— 02)3 +r2) (4)

pe —ao?

Note that « has two possible values. That
means the roles of a and 1 — «a are interchange-
able, which is true theoretically. In practice,
however, we must distinguish between the two
cases. If C has more points in the interval
[, + @] than that in [z — 7, 1], we take the
plus sign in (3); otherwise we take the negative
sign.

Although it may not be necessary for a
total classification in practice, we give a guide-
line for doing just that. The optimal choice
of s7 and sy in the sense of the highest rate
of correct classification may not correspond to
a total classification. Under the condition of
total classification, parameters

s1 =Ko+ (1-2a) (Lo — (a—b)) .

s2 =Ko — (1 —2a) (Lo + (a — b)) (5)
are nearly optimal choices.

Finally, we would like to remark that
the percentage of incorrect classification (er-
ror rate) estimated by (2) is conservative, that
is, it is an upper bound for the actual value.
For instance, let us set the parameters to be
c=1,a=6,b=3 and K = L = 3, and we
take s1 and s, as suggested by (5) in order to
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Figure 1. Two artificial spike waveforms (upper-left) are added by “real” noise to construct
2000 test signals. The PCA scattering plot (PC1 vs PC2) shows the difficulty of classifica-
tion (upper-right). Our method separates the signals into two classes with overlapping PCA

scattering (lower).

have a total classification. In the first exper-
iment, C' has 5000 points with o = 0.8. The
estimated error rate is 12%, but it is in fact
7%. In this case, the optimal choice of s; and
8o for total classification has an error rate of
5%. In another experiment, C has 2000 points
with a = 0.5. The estimated error rate is 18%
while it is actually 7%, and it is almost the
best rate. These experiments coincide with our
claims that (i) the estimated error rate is con-
servative, and hence it serves as an indicator
of reliability for the classification; and (ii) that
the choice made by (5) is close to the optimal
(lowest) error rate.

Application to signals of neural action
potentials

We include one set of numerical experiments in
this short article and refer the interested read-
ers to [3]. All numerical tests in this article are
done with Matlab 6.5 on an Intel PC by pro-
grams written by the investigators. There are
two artificial spike waveforms as shown in the
upper-left corner of Figure 1. We construct
2000 test signals by adding “real” noise cut
from a recording of biological experiment to

these two waveforms. Each signal is considered
a 32-dimensional vector, In order to apply the
classification method from previous section, we
have to select one particular position and col-
lect numbers of that position from all signals
to form the data set C.

The best position to collect should be that
at which waveforms have the largest difference.
But this position is unknown to us since orig-
inal waveforms are supposed to be contami-
nated by noise. One may consider applying (4)
to estimate a — b (the difference between the
waveforms) at every position. But this ap-
proach is not desirable because the formula, is
unstable when a — b is smaller than o. In fact,
a — b is larger when & is larger, it leads us to
consider the position at which the signals have
the largest standard deviation.

In this numerical experiment, o = 0.5 and
the standard deviation of noise is 11 (¢V). The
largest difference of these two waveforms (a—b)
is about 37 (4#V), but we did not use this fact
during the experiment. The PCA scattering
plot (PC1 vs PC2) of the 2000 test signals is
shown in the upper-right corner of Figure 1.
It is clear that an experienced operator may



think there should be two clusters in the plot,
but it is not clear where to make a decisive cut.

With parameters chosen (we always let
K = L = 3) or evaluated as in the previous
section (for a total classification), our method
classifies the test signals at the 21st position
(at which position the signals have the biggest
standard deviation about 22) into two classes.
The PCA plots for the two classes are shown
in two graphs at the bottom of Figure 1. It
is clear that these two classes are slightly over-
lapping in the PCA plot, and it is usually hard
to achieve by human operators. The estimated
error rate is 14%, and it is actually only 5%.

Let’s make some final remarks here. It is
clear that the smaller the difference between
waveforms, the worse the classification. If the
largest difference between waveforms is even
smaller than the standard deviation of noise,
we cannot expect any useful results from this

method. For instance, in the previous experi-
ment, when the true difference is 0 at the 3rd
position, the estimated value is an absurd —62;
but when the true difference is 30 at the 14th
position, the estimated value is 31. Although
the estimated upper bound of error rates is a
guarantee for the correctness, but it seems a
little bit too conservative. It leaves some room
of improvements. Finally, it is an interesting
and important task to extend this method to
the classification of more than two groups.
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