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Abstract Spikes are classified according to their finite

differences in various orders. The fundamental idea that

makes it work is that finite differences can extract and

isolate features from spikes. This method showed better

sorting quality and involved less labor than the methods of

principal component analysis, original reduced feature set,

and wavelet-based spike classifiers.

Keywords Spike sorting � Multi-channel recording �
Reduced feature set

Introduction

While many powerful imaging techniques are being used in

neuroscience, extracellular recording remains the only

choice that provides time resolution of activities in the

brain at the single-neuron level. However, multiple single-

unit extracellular recordings are useful only when the

action potentials generated by different neurons can be

classified by their particular waveforms, or spikes, from the

digital signals detected by electronic instruments.

A well-chosen reduced feature set (RFS) will largely

increase both the efficiency and accuracy of classifications.

Suppose that each action potential, once detected, is sam-

pled into a digital signal, or spike event. We collect N such

events, each with k samples, namely vn ¼ vn
1; v

n
2; . . .; vn

k

� �

for n = 1, 2,…, N. The idea of an RFS is to choose e
positions (indices) 1 B s1 \ s2 \ … \ se B k such that e
is far less than k and the (reduced feature) set,

vn
S1
; vn

S2
; . . .; vn

Se
n ¼ 1; 2; . . .;Nj

n o
;

is good enough to classify the N events into K clusters. In a

pioneering work on RFS, Dinning and Sanderson [1]

selected features that independently maximize a distance

between cluster means and minimize within-cluster vari-

ances. The features are far apart because of the requirement

that si� sjj j � 4: They also made the assumption that the

clusters have equal a priori probabilities; that is, each

cluster has roughly N/K events. The K-means clustering

algorithm [3] is applied to a feature set, and the number of

clusters is indicated by an F-ratio criterion. They showed in

two experiments with N around 50 and k = 34 that two

and four clusters (K = 2, 4) were determined by three and

four features (e = 3, 4), respectively. Salganicoff et al. [6]

presented an improved criterion that selects features

according to their variance weighted by the distance from

previously chosen positions. Their experiments were done

with N around 100 and k = 64, and three or more clusters

were satisfactorily determined by six to eight features.

In a similar spirit with RFS, one may apply clustering

algorithms on the first few components of the principal

component analysis (PCA) of the events; see, for instance,
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the work of Eggermont et al. [2]. In order to make the

clustering procedure more manageable, one of the main

ideas is to reduce the dimension, and RFS and PCA are the

most available means for this purpose. Recently, we have

seen wavelet-based spike classifiers (WSCs) make their

entrance into this field. For instance, Letelier and Weber

[5] selected the few wavelet coefficients of the events that

reveal clear signatures of spikes, and Hulata et al. [4] used

wavelet packets for the same purpose.

The fundamental reason that WSCs work is that wavelet

coefficients extract the signatures of the spikes. The

wavelet coefficients are essentially the weighted differ-

ences of the averaged input data. But the averaging process

would contrarily smooth out the signals. So WSCs actually

reveal that the signatures are richer in differentiations

rather than in the spikes themselves. This observation

motivated us to use the finite differences of signals as the

means to directly extract features from the events, that is,

take the differentiation without prior smoothing. The result

is the minimax reduced feature set (mRFS) method that we

present in the next section.

Methods

The mRFS method consists of two steps: (1) calculate the

finite differences of the events to a pre-determined order,

q-1, and (2) select RFS (two indices only) by minimum

versus maximum two-dimensional plots (the mRFS plots).

As only a small number of plots are required to select the

RFS, they can be arranged on one screen panel to make

effective observations.

To simplify the notation, we drop index n and denote an

event by v = (v1, v2,…, vk), of N such events. The finite

difference of v of order k is denoted by Dkv = (w1, w2,…, wk)

with

wl ¼
Xk

j¼0

�1ð Þ j
Ck

j vl�j; l ¼ 1; 2; . . .; k;

where Cj
k is the combinatorial number k!= j! k � jð Þ!ð Þ: It is a

convolution of event v and the finite difference coefficients

�1ð Þ jCk
j : Event v is padded by constants when vl-j is out of

range.

In Fig. 1, we show a plot of four events along with their

differences of order 1, 2, and 3. Observe that the wave-

forms become increasingly separated as the order of

difference grows. This is what we mean by ‘‘extracting the

signatures’’ of the spikes.

Then we prepare for the mRFS plots that allow an

operator to select the features. Let pk be the index where

most of the signals in Dkv reach their minimum, and qk be

the index where most of the signals in Dkv reach their

maximum. For each pk and ql, for 0 B k, ‘ B q-1, we

make a (Dkv)pk versus (Dlv)ql plot. If we take finite dif-

ferences up to order q-1, there are q2 plots corresponding

to each choice of k, ‘ = 0, 1,…, q-1 with N dots on each

plot. A reasonable choice is q = 4, and there are 42 = 16

mRFS plots. In this case, one can easily arrange the plots

on one screen and make a clear and confident decision

based on the scatter patterns in the plots. An operator

inspects the mRFS plots and chooses one with the most

plausible number of clusters and whose clusters are the best

separated. The (two) indices that comprise the ‘‘chosen’’

mRFS plot are the features we are looking for, and the

spike templates are determined according to the clusters.

See examples in the next section.

All computations in this article were performed by

Matlab 6.5 running on an Intel PC.

Results

For a numerical simulation, we produce three types of test

events by contaminating four typical artificial spikes with

noise signals cut from real experiments (obtained from a

published study by Tsai et al. [7]). The four artificial spikes

are shown in the middle of Fig. 2. Let m be the magnitude

of the minimal position of the smallest spike. In types 2SD,

origin

order  1

order  2

order  3

Fig. 1 Plots of four events (origin, k = 0) and their finite differences

of order 1, 2, and 3 (k = 1, 2, and 3). Observe that the waveforms are

separated further by the finite difference plots
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3SD, and 4SD, we scale the noise such that the standard

deviation is 1/2, 1/3, and 1/4 of m, respectively. To make a

10-s simulation signal, we add 1,600 artificial spikes (400

each) with random positions to each type of noise signal.

Letting s be the standard deviation of the simulation signal,

we run a spike detection algorithm that captures spikes

when the ‘‘amplitude’’ is over 2 s. The detected spikes are

aligned with their lowest positions. For instance, the

algorithm has detected 1,320 spikes for the 3SD case, and

their superimposed waveforms are shown on the right of

Fig. 2. As we can see on the lower part of Fig. 2, some

artificial spikes are not detected, and some noise signals are

mistakenly included.

With q = 4, we present all 16 mRFS plots for each type

of test event in Fig. 3. For instance, the plot title ‘‘2 vs. 0’’

means the plot of ðD2vÞp2
vs. ðD0vÞq0

; that is, each event, v,

is represented by one dot (x, y), where x is the entry of D2v

at position p2 and y is the entry of D0v = v at position q0. It

is clear that some scattering patterns stand out from the

others with four clear clusters.

Using the test events of the three types described in

Fig. 2, we compare the performance of mRFS with RFS,

WSC, and PCA. For the RFS method with two features, we

make all (2
32) = 496 scatterplots for each pair of indices

and choose those with four clusters by inspecting all of the

plots. For the WSC method, we use the so-called Daub4

orthonormal wavelet (with eight coefficients) to perform

the discrete wavelet transformation for each event. After

the transformation, there are still 32 elements at five scales.

We choose those with four clusters by inspecting all of the

496 scatterplots for each pair of transformed elements.

Again, for the PCA method, we choose those with four

clusters by inspecting all of the 496 scatterplots for each

pair of principal components. In Table 1, we display the

number of four-cluster plots out of the total number of

scatterplots for each type of test event. Although the mRFS

and other methods all failed to separate four-cluster plots

under higher noise level (2SD), the mRFS shown the best

efficiency among these methods under lower noise levels

(3SD and 4SD).

Once the number of classes is determined and the two

indices that made the ‘‘best’’ scatterplots are known, any

clustering algorithm can be applied to the set of two indices

for the actual classification. For instance, the Matlab

function fcm() in the Fuzzy Logic Toolbox is a robust

implementation of the Fuzzy C-Means clustering algo-

rithm. For the test events, we applied fcm() to the two-

index sets that produced four-cluster plots and estimated

the accurate rates of each case. It can be seen on Table 1

that if only two features or components are allowed, the

mRFS outperforms the other three methods under 3SD and

4SD noise conditions.

We also used real experimental data to show the prac-

ticality of this method. These spikes were recorded from

the primary sensorimotor cortex of a rat (also obtained

Type noise Totle (N )

2 SD 390 384 179 153 384 1490

3 SD 393 396 206 225 100 1320

4 SD 400 398 262 275 10 1345

Fig. 2 Upper: 1,600 superimposed noise signals cut from biological

experiments (left). Four artificial spikes with typical waveforms

(middle). The superimposed detected spikes in the 3SD case, aligned

with their lowest positions (right). Lower: For each type of simulation

signals, the total number of detected spikes, and a classification of

what is really detected

0 vs 30 vs 20 vs 10 vs 0

3 vs 3

2 vs 3

1 vs 3

3 vs 2

2 vs 2

1 vs 2

3 vs 1

2 vs 1

1 vs 1

3 vs 0

2 vs 0

1 vs 0

3 SD2 SD
0 vs 30 vs 20 vs 10 vs 0

1 vs 31 vs 21 vs 11 vs 0

2 vs 32 vs 22 vs 12 vs 0

3 vs 33 vs 23 vs 13 vs 0

4 SD
0 vs 30 vs 20 vs 10 vs 0

3 vs 3

2 vs 3

1 vs 3

3 vs 2

2 vs 2

1 vs 2

3 vs 1

2 vs 1

1 vs 1

3 vs 0

2 vs 0

1 vs 0

Fig. 3 Sixteen mRFS plots

(all of them) for each type of

test event. Those with four clear

clusters are marked by grey

backgrounds
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from the experimental data of Tsai et al. [7]). As shown in

Fig. 4, which is similar to the numerical simulations, the

best mRFS plot screened from 16 plots shows more distinct

clusters than the other three best ones screened from 496

plots of the WSC, RFS, or PCA methods in each case. The

test with real data indicates the merits of better sorting

quality and less labor using the mRFS method.

Discussion

Since an event consists of spike and noise, the finite dif-

ference applies to both parts of the event. If the process

‘‘magnifies’’ the spike, it should do the same thing to the

noise. It seems only reasonable that the effects would

cancel each other out. In general, this is true. In the par-

ticular situation of typical spike sorting, we are fortunate to

see that the ‘‘signatures’’ of typical spikes are magnified

more than the variances of noise. This is the essential way

by which the mRFS method works. We explain this issue

by the following mathematical model.

Let v = p ? x where p is the spike and x is the noise

modeled by a random variable with a mean of 0 and

standard deviation of r. By the linearity of finite differ-

ences, we have Dkv = Dkp ? Dkx. Here x = (x1, x2,…, xk)

is a noise, the component, xi, of which is a sample from a

random variable, Xi, the mean of which is 0 and standard

deviation r. By the definition of Dkx and by the assumption

that random variables Xi and Xj are independent (for i = j),

Dkx consists of samples from a new random variable with a

mean still 0 and a standard deviation of rkr. The constant,

rk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j �1ð Þj jCk
j

q
2
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

j Ck
j

� �2

;

r

is considered the

magnification factor for the random noise by the finite

difference of order k.

As for Dkp, there are no general descriptions for the

spikes, and we can at best give a mathematical model for

typical cases. For this purpose, we use p0 = (…, 0, -1, 1,

0, 0,…) as a simple model that presents the essential pat-

tern of spikes. Taking this model, it is easy to see that the

nonzero elements of Dkp0 consist of ±Cj
k?1, for instance

D2p0 = (…, 0, 0, -1, 3, -3, 1, 0, 0,…). It is natural to

consider the constant,

sk :¼ max Dk p0j j
max p0j j

¼ Ckþ1
ðkþ1Þ=2b c;

as the magnification factor for the typical spike by the finite

difference of order k.

Since the number of samples for an event is usually

around 32, we do not need finite differences of arbitrarily

high orders. In practice, we think that an order of k B 6

will suffice. In this practical range of k, sk [ rk; that is,

spikes are magnified more than the noise by the process of

finite differences.

In this representation, we see that two features are

enough for the classification. In case one needs more fea-

tures that are not too close to the chosen ones, one can

exclude the chosen indices together with their neighbors

and run the mRFS procedure again to find the next pair of

minimax features.

There were no more than four clusters sorted in the three

types of simulated tests, suggesting that the mRFS method

will not produce over-clustering results. However, the

mRFS method cannot deal with the overlapping problem

directly. The overlapped spikes will likely be detected by

their long waveforms, and they will be observed as outliers

in the mRFS scatterplots.

Table 1 For each type of test event, and for each of the mRFS, WSC,

RFS, and PCA methods, we list the total number of scatterplots (on

the denominator) and the number of plots that show four clear clusters

(on the numerator)

Type Analysis methods

mRFS WSC RFS PCA

2SD 0/16 0/496 0/496 0/496

3SD 3/16 3/496 0/496 0/496

(1 vs. 3, 0.61) (8 vs. 22, 0.59)

(1 vs. 1, 0.59) (10 vs. 22, 0.58)

(3 vs. 2, 0.57) (8 vs. 21, 0.57)

4SD 9/16 7/496 3/496 0/496

(1 vs. 3, 0.81) (10 vs. 22, 0.80) (17 vs. 19, 0.77)

(1 vs. 1, 0.80) (10 vs. 21, 0.79) (17 vs. 18, 0.55)

(3 vs. 2, 0.79) (8 vs. 9, 0.78) (17 vs. 20, 0.52)

(2 vs. 2, 0.78) (9 vs. 11, 0.77)

(0 vs. 3, 0.71) (8 vs. 21, 0.76)

(0 vs. 1, 0.66) (8 vs. 22, 0.76)

(2 vs. 0, 0.62) (9 vs. 21, 0.72)

(1 vs. 2, 0.59)

(3 vs. 0, 0.51)

For each case with four clear clusters, we also list the rate of correct

classifications by the fuzzy c-means clustering algorithm

Fig. 4 A comparison of the performances of mRFS, WSC, RFS, and

PCA methods on real neuronal spikes. The superimposed spikes

consisted of 8,910 spikes; the width of each waveform is 1.6 ms,

which covers the entire spike. The plot of mRFS was chosen from 16

plots, while the plots of the other three methods were chosen from 496

plots. Notice that the mRFS plots display more-distinct clusters in this

case
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